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DYNAMICAL BEHAVIOUR OF STRUCTURED 
MACROMOLECULAR SOLUTIONS 

F. FARSACI, M. E. FONTANELLA, G. SALVATO, F. WANDERLINGH 

Inst. of Spectroscopic Techniques, CNR, Messina, Italy 

and 

R. GIORDANO, U. WANDERLINGH 

Inst. of Physics- University, Messina, Ita1,v. 

(Rereiced 20 Frhruar,, 19x9) 

A large number of experimental results have shown that rnacromolelcules in solution give rise to ordered 
(thyxotropic) structures. a noticeable role being played by a dynamic correlation. In the present paper we 
develop a semi-phenomenological model that can be solved analytically. The model is able to describe in a 
quantitative way both structural and dynamical properties of a thyxotropic solution. 

A careful experimental investigation is also carried out and the experimental results are compared to the 
theoretical prediction. In such a way the relevant parameters implied in the structure can be evaluated. 
Some implications concerning energy exchanges between proteins and the thermal bath are discussed. 

KEY WORDS: Macromolecular solutions, enzymatic catalysis 

1 INTRODUCTION 

As a deeper understanding of the biological activity of macromolecules is gained, so it  
is becoming clear that the role played by collective properties of macromolecular 
solution requires a full investigation. I t  is in fact well known that in a solution the 
macromolecules no longer behave as randomly distributed particles. On  the contrary 
there is a well defined tendency to a self-organization that gives rise to long-ranged 
structures. 

As a consequence the energy exchanges between the macromolecules and the 
surrounding medium cannot be treated in terms of the usual “thermal bath”; the 
macromolecules and the solvent being involved together in a collective structure. 

In  the past years the collective properties of macromolecular solutions has been 
extensively investigated by our group, using a number of widely different experimental 
techniques. 

The results obtained from viscosity’.2, acoustic3, and light ~ c a t t e r i n g ~ . ~  measure- 
ments indicate a rather general behavior that seems to apply to different kinds of 
macromolecules like lysozyme, B.S.A., haemoglobin and DNA. As a general rule, 
macromolecules in aqueous solution tend firstly to cluster, giving rise to regions in 
which the concentration is very high. Successively the clusters organize themself in a 

205 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
2
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



206 F. FARSACI et a/. 

long-range spatial structure, that turns out to be quite stable and, in fact, behave like a 
thixotropic structure being able to give macroscopic mechanical effects, like a non 
zero shear stress at zero shear rate, as showed in rheological measurements’. 

The latter process requires a much longer time than the former one. The spatial 
structure builds up gradually in the course of the time and becomes fully developed 
only after many hours or even days. 

The existence of solid-like structures in a solution has been reported elsewhere5. 
Purely repulsive potential can give rise to a structure (Wigner-crystallization)6 whose 
properties, however, are mainly determined by boundary conditions. A two-minima 
potential (Landau potential)’ can give rise, as well, to an ordered structure. 

In our case the origin of the structure seems to be statistical in character, rather 
than due to some specific interparticles interaction, and behave as a collective 
property of the system. 

In fact if one considers the whole spatial spectrum of the fluctuations of concentra- 
tion (i.e. the structure factor S(k)), our preceding results seems to indicate that there 
are some Fourier components characterized by an anomalously long relaxation time. 
As a consequence such components will dominate the structure factor, giving rise to 
some sort of order. Therefore a rather direct correlation would exist between static 
and dynamic properties in a macromolecular solution. 

Although the static structural properties can be considered as firmly established 
from the above mentioned experimental results, the same do not hold as far as the 
detailed dynamical behaviour is implied. 

It  is well known that in the case of freely diffusing object (Brownian particles), the 
autocorrelation function of scattered light, C(z) behave like a single exponential 

C(t) = 

where the time-constant r is related to the diffusion coefficient. 

= 2Dk2 

where k is the exchanged wave vector, and the diffusion coefficient D is a 
k-independent quantity. 

In our preceding results, however, the correlation function cannot be fitted with a 
single exponential law. In addition, if an “effective” diffusion coefficient Deft is 
calculated as the derivative at the origin of the autocorrelation function* 

it turns out that such a quantity is a function of the exchanged wave-vector k. Actually 
its inverse, De$, well reproduces the behaviour of the structure factor S(k), according 
to the semi-phenomenological equation8 

being D o  a constant. In any case, the values of Deff are much lower than the literature 
values for the diffusion coefficient of the given macromolecule (at infinite dilution). 
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MACROMOLECULAR SOLUTION DYNAMICS 207 

In order to perform a detailed experimental analysis of the dynamical properties of 
our solution, i.e. to get an experimental evaluation of the dynamical structure factor 
S ( k ,  t )  two main points are to be taken into account. 

Firstly, the preceding results indicate that the dynamical behaviour of a structured 
solution encompasses a wide range of time. A typical autocorrelation function could 
be fitted with the sum of at least two exponential, whose time-constants differs for 
more than an order of magnitude’. In the present work we overcomed such a difficulty 
by using an expecially designed single-clipped digital correlator, as described in 
Section 4. 

The second point arise because of the need to compare results obtained in different 
experiments performed at various exchanged wave vector k. Obviously the temporal 
behaviour of the correlation function is not affected by the over all instrumental 
efficiency, but the same does not happen as far as the absolute values of the scattered 
intensity are concerned. There are some unavoidable, although very small, misaligne- 
ment and some spurious light entering the photomultiplier that changes in a 
unpredictable way from experiment to experiment. 

We overcomed such a difficulty by finding an “internal standard” in our samples, as 
described in Section 4, that allows a careful normalization of data taken at different 
scatering angle. 

In such a way we are able to perform an experimental investigation, in which the 
autocorrelation functions of the scattered light are obtained in a very large scale of 
time (from 200 ns to - 0.1 sec.) and for different exchanged wave vector k. In the same 
time we construct a theoretical model for a structured solution, that can be solved 
analitically and allows the calculation of both the static structure factor S ( k )  and the 
dynamical autocorrelation function ( S ( k ,  t ) S ( k ,  t + 7)). 

The comparison between the calculated behaviour and the experimental results 
gives support to the validity of our model, and allows a better understanding of the 
interconnection between dynamics and structure. 

In Sections 2 and 3 the theoretical model is developed, Section 4 is devoted to the 
description of the experimental set-up and to the comparison of the obtained result 
with the model, while in Section 5 we report some concluding remarks. 

2 THEORETICAL MODEL: GENERAL DESCRIPTION AND STATIC 
STRUCTURE FACTOR 

As pointed out in Ref. 4, the scattered intensity at a given exchanged wave vector k is 
given by 

I(k) = eikiC(t)& s 
where 
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20X F. FARSACI et al. 

is the spatial autocorrelation function of the “planar” density (concentration) 

P ( x )  = P ( X ,  y , z )dy  d z  s (3) 

being the x axis parallel to the exchanged wave vector k. Therefore, because of the 
Wiener-Kintchine theorem, the scattered intensity, Eq. (l), reproduce the power 
spectrum of the fluctuation of density (concentration) along the direction spanned by 
k, i.e. the “structure factor” S(k). 

As a consequence we can treat our model in a one-dimensional way. In the sequel 
we call “cluster” a localized positive fluctuation of the (planar) density p(x) ,  living for 
a long enough time to give a well defined “form factor” in the scattered intensity. 

We will be concerned with the spatial arrangement of clusters along the x axis, 
together with their dynamical behaviour. 

The existence of clusters, spatially distributed in a rather regular way has been 
evidentiated by preceding measurements, as discussed in Section 1. 

We indicate with R , ( t )  the center-of-mass position of a cluster, at the time t .  Then 
the density distribution will be the convolution of the “shape” of a cluster (the form 
factor) with an array of delta-functions 6 ( x  - Ri) .  Our calculation is mainly con- 
cerned with the structure factor, its product with a form factor being quite trivial. 

Therefore we write 
P(x ,  t )  = c 6(r  - R,,(t)) (4) 

The Fourier transform of the spatial autocorrelation function, i.e. the time-dependent 
structure factor, will be given by 

n 

n . m  J J  

n.  m 

Such a quantity is proportional to the instantaneous value of the scattered intensity, 
so that the experimental time autocorrelation function will be proportional to 

Now, as far as our model is concerned, we hypotize that the center-or-mass position of 
a cluster can be written as: 

where L is a fixed parameter, while ~ ~ ( t )  are stochastic variables describing the 
displacement from the distance L between two nearest neighbours. 

In other words we assume that, given a cluster at R i ,  there is a “preferred distance” 
L for the position of the next cluster, the fluctuation of the actual distance being 
described by the stochastic variable E , .  
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MACROMOLECULAR SOLUTION DYNAMICS 209 

In such a way we are concerned with an order that is gradually lossed at increasing 
distances. 

As far as the time evolution of the stochastic variables ei are concerned, we use a 
Langevin-like equation. Let us consider a small time interval 5,  that plays the role of a 
mean collision time. Then: 

(8) 

In Eq. (8)  the first term on the RHS describes a systematic evolution that tends to 
reestablish the “preferred” distance L, while hi is a random variable distributed 
according to a Gaussian law: 

E i ( t  + 5 )  = Ei(t)e-ar + 6, 

(9) 

From a physical point of view, the parameter (Y in Eq. (8) would be concerned with 
some restoring force, while the parameter p in Eq. (9) plays the role of an “effective” 
temperature. 

Starting from an arbitrary initial values of the displacement, ~ ~ ( 0 ) .  after a time 
interval t = 1’7 ( v  being an integer), the displacement E i ( t )  will be given, according to 

p ( ( j . )  = 1 ,-at ip 2 2  

’ J&’ 

Eq. (8), by: 
V 

where dij  is the random displacement of the ith cluster, taking place at the times j 5 ,  the 
Sij are supposed to be independent from j (Markovian process). 

Obviously after a long enough time, the memory of the initial displacement is lost, 
so that the equilibrium distibution of the stochastic variables E~ will be given solely by 
the sum in Eq. (10): 

v -  1 

j =  1 1 = 0  

being i, = v - j .  We are therefore concerned with a sum of independent stochastic 
variables. As a consequence the c i  are distributed according to a Gaussian law, and the 
mean square value 0 will be given by: 

that for t -+ cc ( v  -+ 30) reduces to 

Notice that if we let (Y -+ 0 in Eq. ( 1  1) then g2 becomes a linearly increasing function of 
time (a2 = p 2 v ) ,  and corresponds to a purely diffusive (brownian) motion; the 
diffusion coefficient being given by p 2 / z .  
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210 F. FARSACI et al. 

On the contrary if ct + 00 (i.e. any displacement is cancelled before the next occurs), 
then a2 = p z  = const. and we are left with non-diffusing objects, that move in a 
“thermal cloud” around a fixed initial position. 

A structured solution is in an intermediate condition, the parameter a measuring 
the tendency to the order. 

In order to evaluate the structure factor S ( k )  at equilibrium, we can write Eq. ( 5 )  as 
follows 

) eik(Rn - R m ) )  = C ,jk(n - m)L(eikA.m 

m .  n 
( W ) )  = c ( 

m .  n 

being 
n 

An,= 1 Ei 
i = m +  1 

The latter quantity is the sum of ( n  - m) independent stochastic variables, whose rms 
is given by Eq. (1 1’). As a consequence the probability distribution for Anm turns out to 
be : 

- (Alm/ln-mlaz)  
1 

p(Anm) = Jm 
and the mean value furnishes: 

Therefore the structure factor will be given by: 

4 

being s = ( n  - rn) and N the total number of clusters. 
Now, because of the eveness of the terms implied in the summation, the latter 

reduces to twice the sum of the real part, taken for S 2 0. In addition the damping 
terms allows to take S + + cc, so that one is concerned with an absolutely convergent 
geometrical series. We obtain, apart from a normalization factor 

The behaviour of such a function is plotted in Figure 1. It can be shown that the 
structure factor is characterized by peaks corresponding to k L  = 2nn, whose height 
tends to infinity as ~7 + 0 (perfectly ordered array of clusters). On the contrary for 
large values of cr the structure factor tends to unity (unstructured “perfect” fluid). 

As mentioned before a thixotropically structured solution is in an intermediate 
condition and will show a more or less long-ranged order according to the presence of 
more or less pronounced peaks in the structure factor. 
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G I -= 0.1 
I L 

I 

G -= 0.2 [ I  
I I  L 

6 12 18 
k L  

Figure 1 Structure factors in partially ordered systems. The ratio u / L  measures the disorder. 

3 DYNAMICAL BEHAVIOUR: THE AUTOCORRELATION FUNCTION. 

According to our model, the autocorrelation function (Eq. 6 )  can be written as 
( ~ ( k ,  o ) s ( ~ ,  t ) )  = 1 eik(m - n ) L e - i k ( p - q ) L ( e i k A " " ( 0 ) e  - i k A p q ( t )  ) (14) 

nmpq 

where, accordingly to the time evolution law (Eq. 10): 
v -  1 

AqP( t )  = AqP(O)e - "' + 1 A:p, *e-"' 
1=0 

being 
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212 F. FARSACI et al. 

Now, if we suppose that the random displacements 
initial position, the mean in Eq. (14) can be written as: 

are uncorrelated with the 

> ( eikAnm(0) e - ikApq(r) 

As mentioned before, 
can write 

is a Gaussian variable with r.m.s. = Ip - q ( p 2 ,  so that we 

v -  1 )) = exp( -k21P4- 41P2 v - l  +XP( - ik ;oAv'.. 1e - l a r  1=0 e-21ur)  

Notice that for t + c/3 ( v  -+ a), the second factor in the first mean of Eq. (15) 
disappear. In such a case, taking into account Eq. (12), one obtain 

( e ikAndO)e ikApq(r )  -W2a2/4) lm - n l e - ( k 2 a 2 / 4 ) l ~ - q l ,  
>,-a3 = 

In such a case the sum in Eq. (14) factorize, and we get: 

(S(k O N k  t)>r+, = (S(k>>2 

i.e. the correct asymptotic value of the autocorrelation function. In the same way one 
find: 

(S(k, O)S(k, t)>,+o = ( S ( N 2 >  
In order to evaluate the time-behaviour of the autocorrelation function, we have to 
calculate the first mean in Eq. (15). 

Now such a mean cannot be factorized unless the two intervals rnn and p q  are 
disjoint. In such a case the factorization of the mean leads to the results: 

k 2 a 2  
Ip - ql(1 - e-2var 

=exp( --\rn- k2a2 4 nl ) exp ( -~ k;21P-ql 

if: rnn n p q  = 0 
and we obtain the same kind of contribution as those appearing in (S(k))'. In other 
words the only variable contribution to the autocorrelation function comes from 
those terms, in Eq. (14), for which a non zero intersection exists between the two 
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MACROMOLECULAR SOLUTION DYNAMICS 213 

intervals mn and pq, as e.g. for the sequence n < q < m < p :  The intersection ( m  - q )  
furnishes a time dependent correlation between the two stochastic variables A,,,,, and 
Ap4, that prevents the factorization. 

Let us put: 
q - n = s  

p - m = s '  
m - q = [  

the three intervals above being disjoint. 
Now we notice that any other permutation of indices that left unchanged the 

absolute values of s, s' and [ amount or to an exchange of role between (s + 4 )  and 
(s' + t), that do not affect the result, or to a change of signum of (s + 4 )  or (s' + t) or 
both. 

As a consequence the variable part of the autocorrelation function can be written 
as : 

) (16) C 
s. s'. 5 

i ik(s + < ) L e i  ik(s' + <)L(e  i ik(A,(O) + Ac(O)), i (A,,(r) +A&))  
( W 9  O ) W ,  L))"AR = 

the average being now factorizable as follows: 

Analogously: 

Calling: 

Equation 16 becomes (apart from a constant factor): 

(17) ( S ( k ,  O)S(k, t ) )  = ~~~2 
e 2 i k t L e - ( k 2 u z / 2 ) 5 ( 1  +e-"")  + z z A  + 1 e - ( k 2 u 2 / 2 ) < ( 1  - e - " 9  

5 c 

We notice the presence of the two time-dependent terms give by 

(1 + e-""') and (1 - e-'"'). 

Actually in the correlation function (Eq. (1 6)), we are concerned with terms of the kind 
cos(Ac(0)) cos(Ae(t)) = cos(A5(0) + A,(t)) + cos(Ac(0) - A&t)). Now the stochastic 
variable A,(O) + Ac(t) changes in the course of time from twice the stochastic variable 
A,(O), with a rms 4 0 ~ 5 ,  to the sum of two uncorrelated variables, with a rms 2a2t. On 
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214 F. FARSACI et a/. 

the contrary the stochastic variable A,(O) - A,(t) is characterized by a rms that 
increases from 0 to 20~5.  

As a consequence the first one gives a contribution that increases in the course of 
time, while the second one gives a decreasing contribution. 

The increasing contribution, however, is weighted by terms of the kind cos 2k5L: it 
is just such a circumstance that, originates in the autocorrelated function a time- 
behaviour that turns out to be k-dependent (apart from the trivial k2 dependence), 
accordingly to the structural properties of the system. 

The explicit calculation of Eq. (17), although cumbersome can be carried out, and 
furnishes: 

where 
A = (1 - e - ( ~ 2 ~ 2 / 4 )  cos x> D - (1 - 2e-(y2x2i2) cos x + e-(r2X2i2)) 

1 -  

1 B = e - ( Y ’ x 2 / 4 )  sin x 

c = 1 - e - ( ~ ’ x 2 / 2 ) N 9  

E = , - ( Y Z X 2 / 2 ) ( 2 - 9 )  

D ,  = (1 - 2e-(Y2x2/2)(2-9)co~ x + e-Y202(2--9) 

D ,  = (1 - e-(Y2X2/2)9 1 

being x = kL; y = a/L and 9 = 1 - e-var. The parameter N appearing in the 
expression of C arise as an upper limit for the last summation in Eq. (17), that 
otherwise will diverge as t + 0 (v -, 0), (self-correlation of an infinite number of 
segments). 

As far as the first sum in Eq. (17) is concerned, the truncation of the sum will give 
rise to rapidly oscillating terms of the kind cos 2NkL, that can be neglected because of 
the finite angular resolution of any actual experiment. 

In a sense N plays the role of a correlation length: regions, in the system, spaced 
apart more than NL will behave as uncorrelated subsystem. Then both structural and 
dynamical properties will be determined solely by the properties of a single region, the 
total number of region contained in the scattering volume giving rise simply to an 
over-all intensity factor. 

4 EXPERIMENTAL MEASUREMENTS. PROCEDURE AND RESULTS. 

As mentioned in Section 1 a detailed experimental investigation of the dynamical 
structure factor, S(k, w )  requires the measurments of the autocorrelation function of 
the scattered intensity over a wide range of time. In addition, results obtained for 
different exchanged wave vector k must be properly normalized before a comparison 
can be made. 

The former requirement is fulfilled by means of a specially designed digital 
autocorrelator, working in the single-clipping model. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
2
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1
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The intensity autocorrelation function is performed as the product (n,(O)n,( - IT)). 
Here n,(O) is the number of photons recorded in a given time-interval T,,,~", at time 
zero, while n,( - r t )  is the clipped signal recorded at the preceding time rt, where r is an 
integer that labels the channels and T is the time-delay introduced at each channel. In 
the single-clipping mode, n, is equal to zero if no photons has been detected in the 
given time interval T,~,,, and is equal to 1 elsewhere. 

A general description of the autocorrelation technique can be found in Ref. (10). 
In our case, the correlation function is performed in 88 channels, divided in 11 

groups of 8. The delay time between two successive channels is doubled at  each group, 
so that, while in the first group two channel are spaced in time by a given interval, say 
T,, ,~, , ,  the spacing in the last group is 21°tmin. Such a configuration allows the detection 
of the autocorrelation function on an enormous scale of time, the delay between the 
first and the last channel being 16376 T,~,,. In such a way not only both short and long 
time behaviour can be showed simultaneously, but also the uncorrelated part of the 
signal can be easily detected. We recall that the subtraction of the uncorrelated signal 
is of paramount importance for the analysis of the correlation. 

Special care is taken in order to avoid the spurious effect due to after-pulse in the 
photomultiplier, and to the statistical loss of those pulses that fall just at the switching 
time of the clock". The latter troublesome is overcomed by using a de-randomization 
circuitry that sincronizes the incoming pulses with the main clock of the correlator. 

In our correlator we can select for T,,,~,, a value as small as 200ns. Test analysis 
performed with static scatterers shows a perfectly flat correlation function. Also the 
ratio between clipped and unclipped signals perfectly agree with a theoretical 
calculation based on the hypothesis of a Gaussian statistic for the number of photon 
detected in a given time interval. As a final test we perform the correlation of the light 
emitted by an artificial source (LED), randomly modulated. The statistical properties 
of the source are exactly reproduced by the autocorrelation function. 

In Figure 2 the experimental arrangement is shown. 
The optical apparatus is mounted on a two arms interferometer. The angle 9 

between the two arms can be adjusted at any wanted value. We use an He-Ne 5 mW 
laser, the intensity of the beam being controlled by means of a variable attenuator F .  

A small pin-hole, P, allows a first rough selection of the angle 9, mainly with the 
purpose of avoiding spurious light collection. The lens L ,  provides a real image of the 
optical cell containing the sample, onto a plane S , ,  where a slit selects the scattering 
volume. 

The lens L ,  gives onto its focal plane S ,  the spatial Fouier transform of the 
scattered light intensity, so that the very small pin-hole P ,  allows the final selection of 
the scattering wave-vector k. 

The lens L,  collects the selected light toward the single-photon counting photomul- 
tiplier PM, the output pulses being sent to the correlator. 

As far as the sample is concerned, we use a 10% by weight Lyozyme solution. The 
solution is prepared by using high purity materials, purchased from Miles Lab. Inc. 
No buffer is used, so that the pH of the solution has the standard value (pH = - 5 ) .  
The optical cell (S) is filled and the solution is filtered "in situ" by means of a 
peristaltic pump (PP) that forces the fluid though a 0.2 p millipore filter, (MF) in a 
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F Laser  

I 

Figure 2 Experimental set-up. For a detailed description, see text. 

closed circuit. (see Figure 2). The scattering amplitude is periodically recorded, and 
the filtering procedure continued until the scattering efficiency reaches a steady value. 

Experimental measurements are performed 24 hours after the end of the filtering, in 
order to allow the structure to build up completely, according to the results of 
previous measurements. 

Actually we also performed measurements in order to monitor the building-up of 
the structure in the course of the time, the obtained results being in agreement with the 
preceeding ones. All the measurements are performed at constant (room) temperature 
( T  = 25°C). 

With the previously described procedure, for each scattering wave vector, we record 
two autocorrelation functions. In the first one the minimum time interval is T~~~ = 
0.8 ps ,  while in the second one is 7min = 200 ns. The large delay from the first and last 
channel implied in the first correlation function (- 13 ms) allows a very careful 
evaluation of the D.C. terms, that is to be compared with the calculated value 

On the contrary, the short time behaviour, is better seen in the second autocorrela- 
tion function. A tipical result is shown in Figure 3. It can be seen that a rapidly- 
decaying sharp contribution takes place in the initial part of the curve. Such a 
contribution can be easily estracted from the main (comparatively slow) decay that 
infact behave like a constant on such a short time scale. 

It  turns out that the fast contribution can be fitted to a great accuracy by a single 
exponential law, whose time constant r behave like: 

(n*> +,>. 

I' = Dk2 
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Figure 3 Intensity autocorrelation function. 
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where D turns out to be independent from the scattering vector k ,  and is equal to 
10-6cm’/sec. The latter figure is just the diffusion coefficient of the lysozyme 
molecules given in the literature (at infinite dilution). Such a circumstance, together 
with the independence of D from k ,  suggests that the observed fast contribution is due 
to the presence of freely diffusing molecules, not implied in the structure. As a 
consequence, due to the smallness of the molecules ( - 30 A of diameter) compared to 
the wavelength of light (6328 A), also the amplitude of the fast contribution must be 
independent from k .  Therefore such a contribution can be used as an “internal 
standard” in order to properly normalize measurements taken at different scattering 
wave-vector k .  

In  such a way we obtain (apart from a constant factor) the true amplitude of the 
variable part of the intensity autocorrelation as a function of k.  

Such a quantity is to be compared with the theoretical prediction, f ( x , O )  - 
f ( x ,  a), given by Eq. ( 1  8), that turns out  to be strictly connected to the structure 
factor S ( k )  (Eq. (1  3)). 

In order to make such a comparison we need some hypothesis concerning the 
form factor F ( k )  of the clusters. Although the detailed behaviour of the form factor 
depends on the actual shape of the scatterer, in general F ( k )  is a decreasing function of 
k ,  whose width is determined by the linear size of the scatterer. For the sake of 
simplicity we assume that in a cluster the concentration decreases exponentially 
starting from a maximum value attained at the center of mass. As a consequence the 
form factor will behave like a lorentzian, F ( k )  - ( k z  + a’)-’. 

We notice, however, that the relevant features in our fit are the poisition of the 
peaks, that crucially determined the “preferred distance” L (mean intercluster 
spacing). 
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Figure 4 Structure factor in a 10% Lysozyme solution. Dots are experimental points. 

Such a fit is shown in Figure 4, and furnishes the following values for the implied 
parameters: intercluster spacing L = 6160 A; cr = 1500 A. In addition we found a 
value of 350 a for a. 

The next step is the fitting of the experimental autocorrelation functions with Eq. 

A typical result is shown in Figure 5. It can be shown that Eq. (18) describe the 
correct time-behaviour of the autocorrelation function on the entire scale of time. 
Actually a function like that of Figure 5 could be fitted by the sum of two exponential. 
This is a rather common procedure, usually employed in phenomena showing both 
short and long time behaviours, that we used in preceeding ~ o r k s . ~ ~ ~ ~ ~  However our 
present model shows in itself such a peculiarity, so that an unique (although rather 
complicated) expression is able to give account to the full time evaluation of the 
autocorrelation function. 

We would stress that the values of the implied parameters (i.e. L/a, a and N )  turn 
out to be nearly the same for the various function taken at  different k,  to a 10% 
accuracy. 

Taking into account that different measurements refer to different (although 
equally prepared) samples, such a circumstance, in our opinion, gives a strong support 
to the usefulness of our model. 

To obtain value are: L = 5700 f 500, cr = 600 f 50 A; a = 166 & 10 sec-' and 

(28). 

N = 13 1. 
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Figure 5 Autocorrelation function fitted the models equation. 

Notice that, according to the obtained value of o the ordering between clusters is 
practically lost after - 10 intercluster spacing L, in agreement with the value obtained 
for N .  Such an internal consistency supports the role of correlation length attributed 
to N ,  

The comparison with data obtained in the first fit (the structure factor), shows that 
while the two fits give the same value of L, the same circumstance do  not hold as far as 
o is concerned. It seems that the system is more disordered from a statistical point of 
view than from a dynamical one. Actually in our model all the disorder comes from 
the dynamics of the system. The experimental results seems to indicate that, in 
addition, also some configurational disorder takes place. 

5 CONCLUDING REMARKS 

The characteristic properties of a macromolecular solution, i.e. the building up of a 
thyxotropic structure and the peculiar hydrodynamical behaviour, can be understood 
in terms of a stochastic phenomenological model. 

In the model, a preferred distance L exists between nearest neighbours. However, 
starting from any point in the system, the order is increasingly lossed at increasing 
distancies. The tendency to order is introduced as some sort of restoring force, while 
stochastic displacements (random forces) give rise to disorder. The latters, however, 
obey to a spatial correlation requirement: the actual displacement of a cluster from its 
initial position is, in fact, the sum of the displacements of the preceding clusters. In a 

P.C L. B 
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sense any displacement moves the network of the ordered equilibrium positions 
around any given space-point. The experimental comparison of the model shows that 
such a correlation is of finite range, being lossed after about ten intercluster spacing. 
There is therefore an indication for a jerarchy of structures. Macromolecules gives rise 
to clusters, i.e. regions in which a strong correlation of velocities must exist in order to 
maintain the size and shape of the cluster for a long enough time to allow the detection 
of a form factor. In turns the same sort of correlation seems to exist, at a larger scale, 
between clusters. 

The dynamical behaviour of the present model gives rise to an autocorrelation 
function that decays faster at short time, but shows a very long tail. If one treats 
approximately the initial behaviour of the autocorrelation function in terms of an 
exponential decay, the diffusion coeficient will be given by a2x/2. According to the 
value founded for 0, we obtain a value between 2 x lo-’ and 2 x cm2/sec, that 
is the correct order of magnitude founded in preceding works.’ However our 
formalism allows the description of both short and long time behaviour. A description 
in terms of a superposition of different processes giving rise to a sum of exponential 
decays is therefore unnecessary. 

In addition the k-dependence of the dynamical behaviour of the system is self- 
contained in our model, unlike the usual assumption of a k-dependent diffusion 
coefficient, Dell = D,/S(k). The k-dependence arise, in our model, from the competi- 
tion of terms of the kind exp( 1 - e-“‘) and exp( 1 + e - “ )  whose weight is determined 
by the structure factor S(k): in a sense our model evidentiate the common assumption 
of “long lived components” in the spectrum of fluctuations, that give rise to spatial 
order. 

Biophysical implication of the results presented in the present paper are quite 
evident: in a macromolecular solution a dynamical correlation between aggregates of 
correlated macromolecules extends up to semi-macroscopic distancies ( - 6 p ) .  In such 
a system we believe that energy exchange between macromolecules and solvent can 
hardly be treated by the customarily assumed thermodynamic interaction between a 
system and its thermal bath. In a sense in our model tendency to a spatial order 
utilizes the thermal disorder to give rise to a correlated behaviour.” 

Kq/erences 

I .  R. Giordano. M. P. Fontana, F. Wanderlingh. J .  Chem. Phys. ,  74. 2011, (1981). 
2. R. Giordano et a/.  J .  Chem. Phys., 75, 4770, (1981). 
3. R. Giordano, F. Mallamace, F. Wanderlingh I /  Nuooo Cim., 2D, 1272, (1983). 
4. R. Giordano et a / .  Phys. Rev. A ,  28, 3581. (1983). 
5. See, e.g. as one of the first works on such an argument: R. Williams, R .  S. Craudall, P. J. Wojtowiez. 

6. R. Hastings. J .  Chem. Phqs.. 68, 675 (1978). 
7. “Collected Paper of L. D. Landau” Edited by D. Ter Maar (Pergamon, New York, 1965). 
8. J. C. Brown. P. N. Pusey, J. W. Goodwin and R. M. Otterwill. J .  Phys. A, 8, 664 (1975). 
9. R .  Giordano t t  a / .  Oprioca Arta ,  27, 1465 (1980). 

10. C. J .  Oliver, 1974, Photon Correlation and Light Beating Spectroscopy edited by H. Z. 
I I .  G. Careri; E. Gratton, “The statistical time correlation approach to eenzyme action: the role of 

Phss. Rev. Letters. 37. 348 (1976). 

hydration”. in The,f/uctuating enzyme; G. R. Welch ed. (J. Wiley & Sons, N.Y., 1986). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
3
2
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1


